Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3-Ethylenedithio-3,3a,4,5,10,10b-hexahvdro-2H-furo[2.3-a]carbazole

Nesimi Uludağ,^a Aslı Öztürk,^b Tuncer Hökelek^b and Ümit Işık Erdoğan^c*

^aDepartment of Chemistry, Faculty of Technical Education, Mersin University, 33500 Mersin, Turkey, ^bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and ^cDepartment of Chemistry Education, Faculty of Education, Hacettepe University, 06800 Beytepe, Ankara, Turkey Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 29 January 2009; accepted 19 February 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.006 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 12.4.

The title compound, C₁₆H₁₇NOS₂, consists of a carbazole skeleton with tetrahydrofuran and dithiolane rings. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.57 (15)°. The cyclohexenone and tetrahydrofuran rings have envelope conformations, while the dithiolane ring adopts a twist conformation. In the crystal structure, pairs of weak intermolecular N-H···S hydrogen bonds link the molecules into centrosymmetric dimers with $R_2^2(16)$ ring motifs. Weak C-H··· π interactions may further stabilize the structure.

Related literature

For general background, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999,2002); Çaylak et al. (2007). For bondlength data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995)

Experimental

Crystal data C₁₆H₁₇NOS₂ $M_r = 303.43$ Orthorhombic, Pbcn a = 21.7617 (5) Åb = 8.4992 (2) Å c = 15.2115 (3) Å

 $V = 2813.47 (11) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 0.37 \text{ mm}^{-1}$ T = 294 K $0.35 \times 0.20 \times 0.15~\text{mm}$ Data collection

2289 reflections

185 parameters

Enraf-Nonius TurboCAD-4	2289 independent reflections
diffractometer	1105 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.149$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.913, T_{\max} = 0.944$	frequency: 120 min
8196 measured reflections	intensity decay: 1%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.108$	independent and constrained
S = 0.98	refinement

and constrained refinement $\Delta \rho_{\text{max}} = 0.24 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$N10-H10\cdots S2^{i}$ $C3A-H3A\cdots Cg2^{ii}$ $C4-H4B\cdots Cg1^{iii}$ $C5-H5A\cdots Cg1^{ii}$	0.81 (4) 0.98 0.97 0.97	2.71 (4) 2.85 2.79 2.96	3.487 (4) 3.725 (4) 3.556 (5) 3.714 (5)	161 (4) 149 136 135

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x, -y + 2, -z; (iii) $-x, y, -z + \frac{1}{2}$. Cg1 and Cg2 are centroids of the C5b/C6-C9/C9a and C5a/C5b/C9a/N10/C10a rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2478).

References

- Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, ch. 7 and 8. New York: Marcel Decker,
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Caylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, 03913-03914.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297-1299
- Hökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675-677.
- Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, 0374-0376.
- Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.
- Hökelek, T., Patir, S. & Uludağ, N. (1999). Acta Cryst. C55, 114-116.
- Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25-o27. Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, 0791-0793.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.

Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.

Saxton, J. E. (1983). Editor. *Heterocyclic Compounds*, Vol. 25, *The Monoterpenoid Indole Alkaloids*, ch 8 and 11. New York: Wiley.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
Spek, A. L. (2009). *Acta Cryst.* D65, 148–155.

Acta Cryst. (2009). E65, 0595-0596 [doi:10.1107/S1600536809006035]

3,3-Ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole

N. Uludag, A. Öztürk, T. Hökelek and Ü.I. Erdogan

Comment

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek *et al.*, 1994), *N*-(2-methoxyethyl)-*N*-{2,3,4,9-tetrahydrospiro[1*H*-carbazole-1,2-(1,3)dithiolane]-4-yl} benzene-sulfonamide, (III) (Pattr *et al.*, 1997), spiro[carbazole-1(2*H*),2'-[1,3]-dithiolan]-4(3*H*)-one, (IV) (Hökelek *et al.*, 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek *et al.*, 1999), *N*-(2,2-dimethoxyethyl)-N - {9-methoxy-methyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek *et al.*, 1999), *N*-(2,2-dimethoxyethyl)-N - {9-methoxy-methyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl} benzamide, (VI) (Hökelek & Pattr, 1999), 3a,4,10,10*b*-tetrahydro-2H -furo[2,3-*a*]carbazol-5(3*H*)-one, (VII) (Çaylak *et al.*, 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Pattr, 2002), *N*-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-*b*]indol-2-one, (IX) (Hökelek *et al.*, 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1*H*-azocino[4,3-*b*]indol-3-one, (*X*) (Hökelek *et al.*, 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. It consists of a carbazole skeleton with tetrahydrofuran and dithiolane rings. The bonds N10—C9a [1.378 (5) Å] and N10—C10a [1.371 (5) Å] generally agree with those in compounds (II)-(X). In all structures atom N10 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C5b/C6—C9/C9a) and B (C5a/C5b/C9a/N10/C10a) are planar. They are also nearly coplanar with a dihedral angle of A/B = $1.57 (15)^{\circ}$. Rings C (C3a/C4/C5/C5a/C10a/C10b), D (O1/C2/C3/C3a/C10b) and E (S1/S2/C3/C11/C12) are not planar. Rings C and D have envelope conformations with atoms C4 and C3 displaced by -0.677 (4) Å (for ring C) and 0.568 (4) Å (for ring D) from the planes of the other ring atoms, respectively. Ring E adopts twisted conformation. Rings C and D have pseudo mirror planes running through atoms C10a and C4 (for ring C) and running through atom C3 and midpoint of O1—C10b bond (for ring D), as can be deduced from the torsion angles (Table 1).

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2) by forming the $R_2^2(16)$ ring motifs (Bernstein *et al.*, 1995), in which they may be effective in the stabilization of the structure. The weak C—H··· π interactions (Table 1) may further stabilize the structure.

Experimental

For the preparation of the title compound, (I), sodium borohydride (5.00 g, 132.00 mmol) was added to a solution of ethyl 2-(1-oxo-2,3,4,9-tetrahydro-1H -carbazol-2yl)-1,3-dithiolane-2-carboxylate (5.00 g, 13.83 mmol) in THF (50 ml), and stirred

at room temperature for 3 h. Then, the reaction mixture was poured into HCl (15%, 100 ml). The crude product was filtered and recrystallized from acetone (yield; 3.2 g, 77%, m.p. 468 K).

Refinement

H10 atom (for NH) was located in difference synthesis and refined isotropically [N—H = 0.81(3) Å and $U_{iso}(H) = 0.043(15)$

Å²]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

3,3-Ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H-furo[2,3-a]carbazole

Crystal data	
C ₁₆ H ₁₇ NOS ₂	$F_{000} = 1280$
$M_r = 303.43$	$D_{\rm x} = 1.433 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pbcn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 25 reflections
<i>a</i> = 21.7617 (5) Å	$\theta = 9.3 - 16.7^{\circ}$
b = 8.4992 (2) Å	$\mu = 0.37 \text{ mm}^{-1}$
c = 15.2115 (3) Å	T = 294 K
$V = 2813.47 (11) \text{ Å}^3$	Prism, colorless
<i>Z</i> = 8	$0.35\times0.20\times0.15~mm$
Data collection	
Enraf–Nonius TurboCAD-4 diffractometer	$R_{\rm int} = 0.149$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 24.3^{\circ}$

 $\theta_{\min} = 2.6^{\circ}$

 $l = -17 \rightarrow 0$

 $h = -25 \rightarrow 25$ $k = -9 \rightarrow 9$

T = 294 K

Monochromator: graphite

Non–profiled ω scans Absorption correction: ψ scan

(North et al., 1968)	
$T_{\min} = 0.913, T_{\max} = 0.944$	3 standard reflections
8196 measured reflections	every 120 min
2289 independent reflections	intensity decay: 1%
1105 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0328P)^2 + 1.8766P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.98	$(\Delta/\sigma)_{\rm max} < 0.001$
2289 reflections	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
185 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.32178 (5)	0.10773 (14)	0.23756 (8)	0.0538 (4)
S2	0.33505 (5)	-0.00621 (14)	0.05706 (9)	0.0538 (3)
01	0.48005 (12)	0.0372 (3)	0.1141 (2)	0.0597 (9)
C2	0.43301 (17)	-0.0004 (5)	0.1754 (3)	0.0499 (12)
H2A	0.4450	0.0310	0.2343	0.060*
H2B	0.4250	-0.1126	0.1753	0.060*
C3	0.37602 (18)	0.0902 (5)	0.1461 (3)	0.0394 (11)
C3A	0.40456 (17)	0.2447 (4)	0.1109 (3)	0.0391 (11)
H3A	0.3786	0.2865	0.0637	0.047*
C4	0.41256 (17)	0.3698 (4)	0.1817 (3)	0.0402 (11)
H4A	0.3724	0.4058	0.2008	0.048*
H4B	0.4332	0.3238	0.2320	0.048*

C5	0.44962 (17)	0.5095 (5)	0.1485 (3)	0.0423 (11)
H5A	0.4272	0.5632	0.1023	0.051*
H5B	0.4566	0.5834	0.1961	0.051*
C5A	0.50957 (18)	0.4512 (4)	0.1140 (3)	0.0375 (10)
C5B	0.56863 (19)	0.5223 (5)	0.1102 (3)	0.0402 (11)
C6	0.5923 (2)	0.6705 (5)	0.1333 (3)	0.0487 (12)
H6	0.5664	0.7483	0.1552	0.058*
C7	0.6542 (2)	0.6994 (6)	0.1233 (3)	0.0582 (14)
H7	0.6700	0.7973	0.1384	0.070*
C8	0.6930 (2)	0.5844 (7)	0.0909 (3)	0.0608 (14)
H8	0.7347	0.6070	0.0850	0.073*
C9	0.6721 (2)	0.4373 (5)	0.0671 (3)	0.0562 (13)
Н9	0.6985	0.3607	0.0454	0.067*
C9A	0.60977 (19)	0.4090 (5)	0.0771 (3)	0.0426 (11)
C10A	0.51613 (17)	0.3010 (5)	0.0837 (3)	0.0365 (11)
C10B	0.46569 (17)	0.1854 (4)	0.0715 (3)	0.0401 (11)
H10B	0.4600	0.1667	0.0085	0.048*
N10	0.57621 (16)	0.2746 (5)	0.0610 (3)	0.0469 (10)
H10	0.5901 (17)	0.196 (4)	0.038 (3)	0.043 (15)*
C11	0.2649 (2)	-0.0299 (5)	0.1985 (3)	0.0658 (14)
H11A	0.2507	-0.0947	0.2469	0.079*
H11B	0.2299	0.0269	0.1750	0.079*
C12	0.2921 (2)	-0.1318 (5)	0.1286 (3)	0.0646 (14)
H12A	0.2599	-0.1851	0.0961	0.078*
H12B	0.3188	-0.2106	0.1545	0.078*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0516 (7)	0.0527 (7)	0.0570 (8)	-0.0052 (6)	0.0097 (7)	-0.0042 (7)
S2	0.0541 (7)	0.0516 (7)	0.0558 (7)	-0.0125 (7)	-0.0012 (6)	-0.0103 (7)
01	0.0462 (19)	0.040 (2)	0.093 (3)	0.0094 (14)	0.0183 (18)	0.0122 (18)
C2	0.042 (2)	0.042 (2)	0.065 (3)	0.001 (2)	0.001 (2)	0.008 (3)
C3	0.039 (3)	0.036 (2)	0.042 (3)	-0.003 (2)	-0.001 (2)	-0.001 (2)
C3A	0.038 (2)	0.035 (2)	0.045 (3)	0.0018 (19)	-0.002 (2)	0.000 (2)
C4	0.034 (2)	0.041 (3)	0.047 (3)	0.000 (2)	0.004 (2)	-0.007 (2)
C5	0.048 (3)	0.036 (2)	0.043 (3)	0.001 (2)	-0.001 (2)	-0.004 (2)
C5A	0.040 (3)	0.040 (3)	0.033 (3)	0.000 (2)	0.002 (2)	-0.001 (2)
C5B	0.050 (3)	0.042 (3)	0.029 (2)	-0.003 (2)	-0.001 (2)	0.001 (2)
C6	0.059 (3)	0.049 (3)	0.038 (3)	-0.005 (2)	0.002 (2)	0.002 (2)
C7	0.067 (3)	0.061 (3)	0.046 (3)	-0.025 (3)	-0.002 (3)	0.006 (3)
C8	0.047 (3)	0.082 (4)	0.054 (3)	-0.017 (3)	0.000 (2)	0.009 (3)
C9	0.049 (3)	0.059 (3)	0.061 (3)	-0.003 (3)	0.007 (3)	0.005 (3)
C9A	0.044 (3)	0.046 (3)	0.038 (3)	-0.007 (2)	-0.001 (2)	0.003 (2)
C10A	0.034 (3)	0.040 (3)	0.036 (3)	0.002 (2)	-0.002 (2)	0.002 (2)
C10B	0.042 (3)	0.034 (2)	0.045 (3)	-0.004 (2)	0.004 (2)	0.000 (2)
N10	0.042 (2)	0.040 (2)	0.059 (3)	0.004 (2)	0.011 (2)	-0.006 (2)
C11	0.051 (3)	0.066 (4)	0.080 (4)	-0.017 (3)	0.005 (3)	0.002 (3)

C12	0.070 (3)	0.048 (3)	0.076 (4)	-0.020 (3)	0.004 (3)	-0.007 (3)
Geometric para	meters (Å, °)					
S1—C3		1.830 (4)	C5B	—C6		1.405 (5)
S1-C11		1.803 (4)	С6—	-H6		0.9300
S2—C3		1.817 (4)	С7—	-C6		1.377 (5)
S2—C12		1.788 (4)	C7–	-C8		1.383 (6)
O1—C2		1.421 (5)	С7—	-H7		0.9300
O1-C10B		1.450 (4)	C8—	-H8		0.9300
C2—H2A		0.9700	С9—	-C8		1.379 (6)
C2—H2B		0.9700	С9—	-H9		0.9300
C3—C2		1.526 (5)	C9A	—С9		1.385 (5)
C3A—C3		1.548 (5)	C9A	—С5В		1.408 (5)
C3A—C4		1.523 (5)	C10.	A—C10B		1.485 (5)
C3A—C10B		1.544 (5)	C101	B—H10B		0.9800
СЗА—НЗА		0.9800	N10-			1.371 (5)
C4—C5		1.522 (5)	N10-	—С9А		1.378 (5)
C4—H4A		0.9700	N10-	—H10		0.81 (3)
C4—H4B		0.9700	C11-	—H11A		0.9700
С5—Н5А		0.9700	C11-	—H11B		0.9700
С5—Н5В		0.9700	C12-	—C11		1.495 (6)
C5A—C5		1.491 (5)	C12-	—H12A		0.9700
C5A-C10A		1.365 (5)	C12-	—H12B		0.9700
C5B—C5A		1.421 (5)				
C11—S1—C3		98.0 (2)	C5B	—С6—Н6		120.3
C12—S2—C3		94.1 (2)	С7—	-C6C5B		119.3 (4)
C2—O1—C10B		109.5 (3)	С7—	-С6—Н6		120.3
O1—C2—C3		106.3 (3)	С6—	-C7-C8		120.8 (4)
O1—C2—H2A		110.5	С6—	-С7—Н7		119.6
O1—C2—H2B		110.5	C8—	-С7—Н7		119.6
C3—C2—H2A		110.5	С9—	-C8C7		122.1 (4)
C3—C2—H2B		110.5	С9—	-C8—H8		119.0
H2A—C2—H2B		108.7	С7—	-C8—H8		119.0
S2—C3—S1		106.7 (2)	C8—	-C9—C9A		116.9 (4)
C2—C3—S1		110.1 (3)	C8—	-С9—Н9		121.5
C2—C3—S2		112.9 (3)	C9A	—С9—Н9		121.5
C2—C3—C3A		101.7 (3)	С9—	-C9A—C5B		122.9 (4)
C3A—C3—S1		116.9 (3)	N10-	—С9А—С9		130.1 (4)
C3A—C3—S2		108.7 (3)	N10-	—С9А—С5В		107.1 (4)
С3—С3А—НЗА		109.3	01–	-C10B-C3A		107.2 (3)
C4—C3A—C3		113.2 (3)	01–	-C10B-C10A		111.1 (3)
С4—С3А—НЗА		109.3	O1–	-C10B-H10B		108.9
C4—C3A—C10E	3	113.8 (3)	N10-			124.4 (4)
C10B—C3A—C3	3	101.7 (3)	C3A			108.9
С10В—С3А—Н	3A	109.3	C5A			109.8 (4)
СЗА—С4—Н4А		109.3	C5A			125.7 (4)
СЗА—С4—Н4В		109.3	C10.	A—C10B—C3A		111.9 (3)
C5—C4—C3A		111.8 (3)	C104	А—С10В—Н10В		108.9

С5—С4—Н4А	109.3		C9A—N10—H10		124 (3)
C5—C4—H4B	109.3		C10A—N10—C9A		109.0 (4)
H4A—C4—H4B	107.9		C10A—N10—H10		127 (3)
С4—С5—Н5А	109.9		S1-C11-H11A		109.7
C4—C5—H5B	109.9		S1-C11-H11B		109.7
C5A—C5—C4	108.7 (3)		C12—C11—S1		109.8 (3)
С5А—С5—Н5А	109.9		C12—C11—H11A		109.7
C5A—C5—H5B	109.9		C12—C11—H11B		109.7
H5A—C5—H5B	108.3		H11A—C11—H11B		108.2
C5B—C5A—C5	131.6 (4)		S2-C12-H12A		110.3
C10A—C5A—C5	121.4 (4)		S2—C12—H12B		110.3
C10A—C5A—C5B	106.8 (4)		C11—C12—S2		107.1 (3)
C6—C5B—C5A	134.6 (4)		C11—C12—H12A		110.3
С6—С5В—С9А	118.0 (4)		C11—C12—H12B		110.3
C9A—C5B—C5A	107.4 (4)		H12A—C12—H12B		108.6
C11—S1—C3—S2	15.4 (3)		C5A—C5B—C6—C	7	177.8 (4)
C11—S1—C3—C2	-107.4 (3)		С9А—С5В—С6—С	7	-0.2 (6)
C11—S1—C3—C3A	137.2 (3)		C5-C5A-C10A-	N10	-176.3 (4)
C3—S1—C11—C12	17.0 (4)		C5-C5A-C10A-	C10B	7.2 (6)
C12—S2—C3—S1	-36.2 (2)		C5B-C5A-C10A-	-N10	-0.1 (5)
C12—S2—C3—C2	84.9 (3)		C5B-C5A-C10A-	-C10B	-176.6 (4)
C12—S2—C3—C3A	-163.1 (3)		C6—C5B—C5A—C	5	-2.7 (8)
C3—S2—C12—C11	49.5 (4)		С6—С5В—С5А—С	10A	-178.4 (5)
C10B—O1—C2—C3	22.4 (4)		C9A—C5B—C5A—	C5	175.4 (4)
C2	0.5 (4)		C9A—C5B—C5A—	C10A	-0.2 (4)
C2-O1-C10B-C10A	123.0 (4)		С8—С7—С6—С5В		-0.1 (7)
C4—C3A—C3—S1	31.6 (4)		С6—С7—С8—С9		0.2 (7)
C4—C3A—C3—S2	152.4 (3)		С9А—С9—С8—С7		0.0 (7)
C4—C3A—C3—C2	-88.3 (4)		N10-C9A-C5B-	C5A	0.5 (4)
C10B—C3A—C3—S1	154.1 (3)		N10-C9A-C5B-	C6	179.0 (4)
C10B—C3A—C3—S2	-85.1 (3)		С9—С9А—С5В—С	5A	-178.1 (4)
C10B—C3A—C3—C2	34.2 (4)		С9—С9А—С5В—С	6	0.4 (6)
C3—C3A—C4—C5	171.0 (3)		N10-C9A-C9-C	8	-178.5 (4)
C10B—C3A—C4—C5	55.6 (4)		С5В—С9А—С9—С	8	-0.3 (6)
C4—C3A—C10B—O1	99.6 (4)		N10-C10A-C10B-	O1	55.3 (5)
C3—C3A—C10B—O1	-22.4 (4)		N10-C10A-C10B-	—C3A	175.1 (4)
C4—C3A—C10B—C10A	-22.4 (5)		C5A—C10A—C10B	01	-128.7 (4)
C3—C3A—C10B—C10A	-144.4 (3)		C5A—C10A—C10B	—СЗА	-9.0 (6)
S1—C3—C2—O1	-160.3 (3)		C9A—N10—C10A-	-C5A	0.4 (5)
S2—C3—C2—O1	80.6 (4)		C9A—N10—C10A-	-C10B	176.9 (4)
C3A—C3—C2—O1	-35.7 (4)		C10A—N10—C9A—	-C5B	-0.5 (5)
C3A—C4—C5—C5A	-55.3 (4)		C10A—N10—C9A—		177.8 (4)
C5B—C5A—C5—C4	-149.7 (4)		S2—C12—C11—S1		-44.2 (4)
C10A—C5A—C5—C4	25.4 (5)				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N10—H10····S2 ⁱ		0.81 (4)	2.71 (4)	3.487 (4)	161 (4)

C3A—H3A···Cg2 ⁱⁱ	0.98	2.85	3.725 (4)	149
C4—H4B…Cg1 ⁱⁱⁱ	0.97	2.79	3.556 (5)	136
C5—H5A…Cg1 ⁱⁱ	0.97	2.96	3.714 (5)	135

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*, -*y*+2, -*z*; (iii) -*x*, *y*, -*z*+1/2.

Fig. 1

Fig. 2